Generalized Hamiltonian Structures for Ermakov Systems

نویسنده

  • F Haas
چکیده

We construct Poisson structures for Ermakov systems, using the Er-makov invariant as the Hamiltonian. Two classes of Poisson structures are obtained, one of them degenerate, in which case we derive the Casimir functions. In some situations, the existence of Casimir functions can give rise to superintegrable Ermakov systems. Finally, we characterize the cases where linearization of the equations of motion is possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Lie Symmetries of a Class of Generalized Ermakov Systems

The symmetry analysis of Ermakov systems is extended to the generalized case where the frequency depends on the dynamical variables besides time. In this extended framework, a whole class of nonlinearly coupled oscillators are viewed as Hamiltonian Ermakov system and exactly solved in closed form.

متن کامل

On the linearization of the generalized Ermakov systems

A linearization procedure is proposed for Ermakov systems with frequency depending on dynamic variables. The procedure applies to a wide class of generalized Ermakov systems which are linearizable in a manner similar to that applicable to usual Ermakov systems. The Kepler–Ermakov systems belong into this category but others, more generic, systems are also included.

متن کامل

Lie Point Symmetries for Reduced Ermakov Systems

Reduced Ermakov systems are defined as Ermakov systems restricted to the level surfaces of the Ermakov invariant. The condition for Lie point symmetries for reduced Ermakov systems is solved yielding four infinite families of systems. It is shown that SL(2, R) always is a group of point symmetries for the reduced Ermakov systems. The theory is applied to a model example and to the equations of ...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Fuzzy subgroups of the direct product of a generalized quaternion group and a cyclic group of any odd order

Bentea and Tu{a}rnu{a}uceanu~(An. c{S}tiinc{t}. Univ. Al. I.Cuza Iac{s}, Ser. Nouv{a}, Mat., {bf 54(1)} (2008), 209-220)proposed the following problem: Find an explicit formula for thenumber of fuzzy subgroups of a finite hamiltonian group of type$Q_8times mathbb{Z}_n$ where $Q_8$ is the quaternion group oforder $8$ and $n$ is an arbitrary odd integer. In this paper weconsider more general grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002